

TYPE CPLR/CPAT

C-SERIES RIGID COUPLINGS

Technical Specification

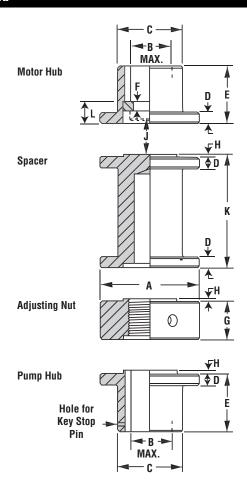
Product Description

John Crane's Metastream® c-series couplings incorporate a segmented, piloted locating design. This eliminates the shaft distortion associated with conventional 'clam shell' coupling designs. The CPLR is for industrial applications and the CPAT is for higher speed applications:

- · Easily adjustable for setting vertical clearance
- · Infinite life
- Corrosion-resistant phosphate coating on AISI 1040 steel
- Robust design

Design Features

- Designed to transmit torque between vertical mounted equipment including:
 - Vertical pumps
 - · Vertical turbines
 - · Vertical mixers
- CPAT meets requirements of API 610 8th edition
- Optional materials and coatings available
- · Electrically insulated design available



TYPE CPLR/CPAT

C-SERIES RIGID COUPLINGS

Technical Specification

Dimensions and Technical Data

Coupling	HP/100	Trust	Fit NEMA	Bolts	Bolt	Α	В	С	D	Е	F	G	Н	ı	ŀ	(
Size	RPM	CAPLB	Frame	Per FLG	DIA.	^	В	U	ע	_		u	"	J	STD	MIN	L
1125	2.7	4500	182-215	4	1/4	3.00	1.125	1.75	0.38	2.00	0.375	1.25	0.125	0.016	4.44	1.63	0.89
1625	8.0	11000	254-326	6	5/16	4.00	1.625	2.50	0.44	2.25	0.375	1.50	0.125	0.016	4.44	1.75	0.89
2125	17.9	28500	364-445	6	1/2	5.13	2.125	3.13	0.63	2.69	0.375	1.75	0.125	0.016	4.44	2.63	0.89
2625	33.8	28500	No std	6	1/2	5.88	2.625	3.88	0.63	2.94	*	3.50	0.125	0.016	4.44	2.63	0.89
2875	44.4	28500	No std	6	1/2	6.38	2.875	4.38	0.75	3.44	*	3.50	0.125	0.016	4.44	2.88	0.89
3125	57.0	38000	No std	8	1/2	6.75	3.125	4.63	0.75	4.00	*	3.50	0.125	0.016	4.44	2.88	0.89
3875	109	66000	No std	6	3/4	8.94	3.875	5.88	0.81	4.38	*	4.00	0.125	0.016	4.44	3.13	0.89
5000	310	159000	No std	8	1	11.75	5,000	7.50	1.00	6.00	*	3.00	0.250	0.125	No std	4.50	1.38
6000	404	199000	No std	10	1	13.25	6,000	9.00	1.13	9.25	0.625	2.38	0.250	0.125	No std	4.75	1.63
7250	712	278000	No std	14	1	15.00	7.250	10.75	2.25	10.75	0.750	3.69	0.313	0.125	No std	7.06	1.94
8500	1148	294000	No std	12	1-1/8	17.25	8.500	12.50	2.25	15.00	0.750	3.56	0.313	0.125	No std	7.31	1.94
10500	2164	352000	No std	12	1-1/8	20.50	10.500	15.00	2.75	18.38	0.750	4.19	0.313	0.125	No std	8.31	1.94

Notes:

- **1.** Driver hub bores are in 0.25" increments from 0.875" to and including 3.875" then any diameter up to 10.500". Standard bores are to AGMA 9002 Class 2 clearance and keyways to AGMA 9002 commercial tolerance for both driver and driven hubs.
- 2. John Crane does not furnish the key stop pin.
- 3. 3/8 or 1/2 inch thick split rings are standard options on sizes 2625 thru 3875 and 1/2 or 3/4 inch on size 5000.
- 4. Adjusting nuts can be supplied blank or threaded. Standard threads are ANSI UN Class 2B, left or right hand.
- 5. National Electrical Manufacturers Association (NEMA) frame sizes apply to VP and HP series.

TYPE CPLR/CPAT

C-SERIES RIGID COUPLINGS

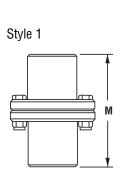
Technical Specification

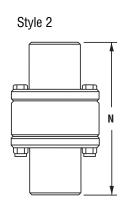
Configurations

Style 1

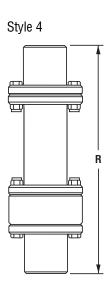
Non-spacer style provides easy assembly on driver and rotating driven equipment shafts. Usually used on equipment where there is a minimum of distance between shaft ends.

Style 2


Non-spacer style with an adjusting nut so that vertical clearances in the driven equipment may be attained. Usually used on equipment where there is a minimum of distance between shaft ends.


Style 3


Spacer Coupling style offers a spacer whereby the driven equipment may be worked on without the disassembly or removal of the driver.


Style 4

Spacer Type Rigid Coupling offers a removable spacer for easy maintenance of driven equipment and an adjusting nut assembly, whereby the vertical clearance in the driven equipment may be attained.

Coupling	М	N		P	R		
Size	IVI	N	STD	MIN	STD	MIN	
1125	4.00	5.25	8.31	5.50	9.56	6.75	
1625	4.50	6.00	8.81	6.13	10.31	7.63	
2125	5.38	7.13	9.69	7.88	11.44	9.63	
2625	5.88	9.38	10.19	8.38	13.69	11.88	
2875	6.88	10.38	11.19	9.63	14.69	13.13	
3125	8.00	11.50	12.31	10.75	15.81	14.25	
3875	8.76	12.75	13.07	11.76	17.06	15.75	
5000	12.00	15.00	No std	16.50	No std	19.50	
6000	18.50	20.88	No std	23.00	No std	25.38	
7250	21.50	25.19	No std	28.25	No std	31.94	
8500	30.00	33.56	No std	37.00	No std	37.00	
10500	36.76	40.94	No std	44.76	No std	48.94	

ΓYPE CPLR/CPAT

C-SERIES RIGID COUPLINGS

Technical Specification

Selection Procedure

Step 1

Determine the shaft diameter of the driver and compare to the maximum sized hub bore in column B of the dimensions shown on page 2. If the driver is a standard Nema HP or VP series motor, use the column marked "Fit Nema Frame" to determine the coupling size required.

Step 2

Determine the shaft diameter of the driven equipment and compare to the maximum sized hub bore in column B of the dimensions shown on page 2. The shaft size of the driven equipment should not exceed the maximum bore size to determine the coupling size.

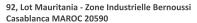
Step 3

The largest size shaft of either the driver or driven equipment will determine the ultimate coupling size.

Step 4

Specify the coupling configuration and type, bore size for the driver and driven equipment hubs, type of fit, and adjusting nut thread details.

Step 5


Select type CPLR for standard coupling tolerances or type CPAT for API 610 8th edition tolerances.

Balance Recommendations

As supplied, standard CPLR and CPAT couplings meet AGMA Balance Class 8 with clearance fit bores. The standard CPAT coupling meets AGMA Balance Class 9 with transition/interference fit bores. While dynamic balancing is not normally required, if specified, John Crane recommends component balancing. Any potential benefits of assembly balancing are negated by the installation fits and adjustable nature of the application. Contact John Crane if your application warrants balancing consideration.

